Parametric Detector Design Tool

	Simple Minded Parametric Detector Comparisons							
Tracking					Stored	Flux inside	Return DR	ID
Radius	Field	E Flow	R_Coil (middle)	1/2 length to endcap iron	Energy		m of Fe	
R (meters)	B (Tesla)	BR^2/Rm				Tm^2		
					Megajoule	S		
0.75	6	1.9	1.25	2.7	372.7	29.5	1.0	Small
1.5	3	2.4	2.05	4.3	401.9	39.6	1.0	Precise
2	3	4.3	4.05	4.7	1734.6	154.6	2.3	Large
1.25	5	4.3	2.78	2.9	1400.8	121.4	2.3	Silicon
1.6	4	5.7	3.4	5.3	2427.6	145.3	2.4	Tesla

Simple Excel program evolved to tool to help your intuition. Lots of parameters to play with, instant gratification.

1

Major Issues

- Assume Energy Flow Calorimetry is necessary
 - High density Silicon-Tungsten EMCal
- Understand and control costs
- No compromise on high momentum tracking
 - Silicon strips for robustness; high resolution
 - Shape of tracker
- High field for:
 - BR² for energy flow
 - Br² for tracking resolution
 - "Cleanup" for VXD
- Hcal location inside or outside coil

Baseline SD Design

Tracker "Box" Format

$\Delta P/P$ vs R_Trkr

 $\Delta P/P \text{ vs } Cos \theta$

Curve families correspond to R_Trkr of 0.75,1.0,1.25, and 1.5 m. Breaks correspond to $Cos\theta_{max}$ of 0.5,0.75,0.85, and 0.92.

Tracker

- Tracker shape: Box design probably more realistic. Adopted by ATLAS after trying other formats. Resolution not yet calculated!
- End structure thin, so endcap tracker viable.
- Effects of multiple scattering not yet evaluated for physics.
- Track finding not yet simulated. Should be fine for stable tracks. (5 Layer VXD) Decays would need help from the tracking calorimeter.
- Detectors at least 10cm square (Now being produced by Hammamatsu for GLAST).
- Barrel readout at ends of each layer, with minimal material by using ASIC's.
 - Duty factor of few μ s every 8 ms. Tiny compared to ATLAS. Thermal management should be easy.

2/6/01

EMCal

EMCal		
W Thickness	2.5	mm
Gap	2.5	mm
Layers	30	
Total X0	21.43	

•Layers of tungsten with gaps for arrays of Si diodes mounted on G10 motherboards

•Gap thickness is major issue; determines Moliere radius and performance of Energy Flow calorimetry.

•4 mm seems easy – accommodate 0.3-0.5 mm Si, 2 mm substrate, 1.5 mm clearance

•1.5 mm barely plausible, probably stacked assembly with buttons rather than insertion.

•For now, assume 2.5 mm gap and think!

EMCal, continued

- Diode pixels between 5 10 mm square on largest hexagon fitting in largest available wafer. (6" available now)
- Develop readout electronics of preamplification through digitization, zero suppression, optical fiber drive integrated on wafer. Fallback is separate chip diffusion or bump bonded to detector wafer. (R&D opportunity!)
- Optimize shaping time for small diode capacitance. Probably too long for significant bunch localization within train.

Hcal Location Comparison

HCal

- Heal assumed to be 4 λ thick, with 34 layers 2 cm thick alternating with 1 cm gaps.
- Could use "digital" detectors, eg high reliability RPC's
- Hcal radiator non-magnetic metal probably copper or stainless
 - Tungsten too expensive
 - Lead possible, but mechanically more painful.
- Hcal thickness important cost driver, even though Hcal cost small.

SD \triangle cost vs Hcal thickness

Metal Costs

	Metals Table						
Metal	unit	W	Stainless	Pb	Cu	A36	
X ₀	m	0.0035	0.0176	0.0056	0.0143		
Lamda_l	gm/cm^2	185	131.9	194	134.9	131.9	
ρ	gm/cm^3	19.3	7.87	11.35	8.96	7.87	
Lamda_m	m	0.095855	0.167598	0.170925	0.150558	0.167598	
Cost	\$/kg	100	2.75	1.43	4.2	3.48	
Metal Notes:							
	W is Hevi-met; 95% tungsten; 2"plate						
	Stainless is non magnetic stainless steel; 2" plate						
	Pb is antimony or dispersion strength lead; 2" plate						
	A36 is medium grade low cost magnet steel, fabricated for ma						

Cost Driver Estimation

item	n	unit	unit cost	total			
<u></u>	70.0	10	400000	* 7 000 000			
	/3.3	m/2	100000	\$7,330,383			
Irkr Electronics	3036.9	ea	580	\$1,761,386			
Irkr Si EC	47.8	m^2	100000	\$4,783,075			
Trkr Electronics EC	5236.0	ea	580	\$3,036,873			
				• • • • • • • • • • • •			
EM Cal si	1343.3	m^2	30000	\$40,299,455			
Em Cal si endcap	294.1	m^2	30000	\$8,822,865			
EM Cal W	64815.0	kg	100	\$6,481,496			
EM Cal W endcaps	14190.1	kg	100	\$1,419,011			
HCAL Rad	5.04E+05	kg	2.8	\$1,387,109			
HCAL Rad endcap	7.74E+04	kg	2.8	\$212,762			
Coil	2083.5	MJ	19925	\$41,513,541			
Fe	4.40E+06	kg	3.48	\$15,307,395			
Fe endcap	5.6E+06	kg	3.48	\$19,353,413			
Fe additional (1)	1.49E+06	kg	3.48	\$5,199,121			
Total (M¢)				¢156.01			
τοται (Ινιφ)				\$100.91			
Notes:							
1. Assume 15% additional magnet iron for support, transport, etc							
2. Only tracker electronics costs included (yet)							
3. No approximately fixed cost included							

Coil and Iron

- Solenoid field is 5T
- Coil concept based on CMS 4T design. 4 layers of superconductor about 72 x 22 mm, with pure aluminum stabilizer and aluminum alloy structure.
- Coil Δr about 85 cm
- Stored energy about 1.7 GJ (for Tracker Cone design, R_Trkr=1.25m, cosθ_{barrel}=0.8). (TESLA is about 2.4 GJ)
- Flux return designed to return the flux! Saturation field assumed to be 1.8 T, perhaps optimistic.
- Iron made of 5 cm slabs with 1.5 cm gaps for detectors, again "reliable" RPC's

SD \triangle cost vs Tracker Radius

MB

SD $\triangle cost vs Cos\theta_{barrel}$

SLAC WBS (A. Johnson)

File Edit WBS View Help									
$\textcircled{2} = \blacksquare \blacksquare \checkmark \checkmark \textcircled{2} \\ \swarrow \textcircled{2} = \blacksquare \blacksquare \\ \checkmark \textcircled{2} \\ \blacksquare \\ $									
😚 WBS	😚 WBS 🖯 Materials 🔓 Labor Rates								
WBS	Component	Number Unit	Materials	MContingency	Labor	LContingency			
1	🜱 NLC Detectors	1 each	167,571,805	60,840,852	50,069,491	16,201,420			
1.1	🍳 🕎 Silicon Detector	1 each	167,571,805	60,840,852	50,069,491	16,201,420			
1.1.1	👁 😭 Vertex Detector	1 each	4,000,000	2,000,000	0	0			
1.1.2	👁 🕎 Tracker	1 each	8,710,000	4,055,000	3,769,800	1,537,620			
1.1.3	👁 😭 Calorimeters	1 each	48,419,740	32,509,948	7,903,250	3,257,065			
1.1.4	👁 😭 Muon Tracker	1 each	16,000,000	4,800,000	0	0			
1.1.5	👁 🕎 Electronics	1 each	16,521,320	3,845,330	21,639,330	6,457,926			
1.1.6	👁 😙 Magnet	1 each	70,381,945	12,936,554	5,230,361	1,776,132			
1.1.7	👁 😭 Installation	1 each	2,617,800	522,320	4,746,050	1,677,383			
1.1.8	👁 😭 Management	1 each	921,000	171,700	6,780,700	1,495,295			

Extraordinarily Preliminary Cost Estimate

- Based on L,S, and P costing + driver costs...
- M&S \$168M
- Labor 50M
- Contingency 77M
- Total 295M

MB

Conclusions

- Just a beginning
 - ~No simulation
 - Very little discussion
- Roughly consistent design.
 - Small tracker still yields big detector
 - Even with 4m L*, last quad will be in detector
- Lots of opportunities for work and even ideas for hardware R&D