<u>Outline</u>

• Issue

- \circ Want to measure MIPs (400 keV/mm in Si) and dense EM showers due to 250 (500) GeV Bhabha e^{\pm}
- EM showers in W are dense: $R_m = X_0(21.2 \text{MeV}/E_c) = 9.1 \text{ mm}$
- For EFlow, need to id. tracks at < 1 cm from shower core (requirement from physics simulations)
- EGS setup
- Results
- Question of sampling layers thickness

EGS Setup

- Use the G. Lindstrom recommendations for E_{cut} in thin sampling layers. (Good accuracy with finite CPU time.)
- Reduced E_{cut} , P_{cut} in thin regions near the Si
- Step size small (0.3%) everywhere

	~6 X	0.5 mm	0.4 mm	0.5 mm	> 3 X
e >	W bulk	W thin	Si	W thin	W bulk
	Ecut = 500 keV	100 keV	100 keV	100 keV	500 keV
	Pcut = 500 keV	100 keV	20 keV	500 keV	1000 keV

- Si layer at depth 6 X_0
- Initial electron (E_e) centered on a $1 \text{cm} \times 1 \text{cm}$ pixel
 - Si thickness 0.4 mm
- Typical EDEP (in MeV) distributions:

• EDEP as function of E_e :

• EDEP as function of depth for $E_e = 100$ GeV:

4

• Fraction of total EDEP in $1 \text{cm} \times 1 \text{cm}$: ($E_e = 100 \text{ GeV}$)

- 1. Broad shower max in depth $\sim 6.5 \pm 1 X_0$
- 2. Fraction of energy in central $1 \text{ cm} \times 1 \text{ cm}$ is ~independent of E_e
- \Rightarrow Results not sensitive to these

• EDEP (MeV) in 0.5 mm pixels from x = 0 to x = 3 mm:

 $(E_e = 100 \text{ GeV}, 6 X_0)$

 EDEP fraction in center pixel as function of pixel size (mm):

⇒ need big pixel size reduction to change dynamic range requirement significantly

- So for 1cm×1 cm : 250 GeV Bhabha / MIP = (340MeV)/(0.16MeV) = 2100 ≈ 11 bits +3 bits for MIP over threshold +2 bits for margin = 16 bits
- decrease in pixel area by 100 gives 2-3 bits reduction
- Need to put in sampling layers; large gaps increase R_m :

$$R_m = \sum w_i R_m^i$$
, $R_m^i \propto \Delta z_i / E_c^i$ where Δz_i is gap; E_c^i is critical energy

• This also degrades performance; not a good way to beat the dynamic range issue!