NLC - The Next Linear Collider Project

NLC High Gradient R&D

D. L. Burke NLC Project Director

NLC Collaboration Video Meeting January 4, 2001

Relative Total Project Cost

NLC - The Next Linear Collider Project

NLC Model May 1999

Total Project Cost (FY2000, without detectors, co	5,107 M\$ Intingency, or escalation)
Injector Systems	19 %
Main Linacs RF Power Systems Beamline Systems Civil Construction/Facilities Beam Delivery	39 % 18 % 10 % 11 %
Global Costs E.g. Controls/Software Central Facilities	17 %
Management, Business Services and Miscellaneous	, 14 %
Total	100 %

High Gradient R&D Coordinating Committee

Goal: Reliable operation of NLC X-Band accelerator structures at design gradients ($E_a \approx 75 \text{ MV/m}$).

Charge: Coordinate use of resources and facilities to achieve this goal.

Committee

- D. Burke, Chair
- C. Adolphsen
- J. Cornuelle
- E. Garwin
- R. Miller
- C. Pearson
- M. Ross
- D. Sprehn
- S. Tantawi
- J. Wang

Our colleagues at KEK have aggressively joined in this effort.

Meeting once per week since September.

For access to notes, schedule, and plans on the web, follow: NLC Technical Home → Main Linac Systems → High Gradient R&D Coordinating Committee.

High Gradient R&D Coordinating Committee

Guidelines and Tasks:

- Focus on NLC X-Band accelerator structures to the exclusion (if need be) of other issues.
- Attack problems on each major front theory, design, manufacture/QC, and operations.
- Fully utilize experience at all sources.

SLAC linac/ATF linac

X-Band structures and tests to date

R&D in superconducting systems

Semiconductor industry

Space technologies

Others as identified

• Identify resources needed or jobs to be done that will speed up or focus the R&D process.

Scientific/technical support Programming support Facilities

- Develop a roadmap and schedule of activities.
- Track results, costs, and schedules.

High Gradient R&D Coordinating Committee

There is a large parameter space that might be explored.

- Define a path that optimizes success.
- Fishing expeditions to experimentally eliminate a wide range of possibilities is not going to get us there!
- Start with processes that have recognized success and acceptance (good practices).

Sub-Committees

- 1. Breakdown Theory (<u>Tantawi</u>/Wilson)
- 2. Structure Design (<u>Wang/</u>Adolphsen/Miller)
- 3. Manufacturing and QC (Cornuelle/Garwin/Pearson)
- 4. Operations and Processing (Ross/Sprehn)

Each of these meet once per week in addition to the meeting of the entire Committee.

General Information and Discussion

Once per week meeting on Monday afternoons for presentation and discussion (coordinated by Chris Adolphsen).

High Gradient R&D

Structure Breakdown Workshop

August 28 - 30, 2000

Coordinators: C. Adolphsen, M. Ross, D. Sprehn, N. Holtkamp,

D. Finley, J.-P. Delahaye, N. Toge

http//:www.project.slac.stanford.edu/lc/wkshp/RFBreakdwn/references/publist.htm

Areas of Concentration

- Circuit design
- Manufacturing and QC
- System Diagnostics, Control, and RF Conditioning

High-Power Facilities

NLCTA

Microwave Test Stand ("Window-tron")

DS2S Operation in NLCTA

High Gradient R&D

Goal

• Run > 500 hours @ 40 MV/m and 250 ns.

Improvements: Better

- Cell Cleaning Method
- Vacuum Pumping

'Gentler' Processing

- Progressive Length of Pulses
- Wait 5 Minutes before Resetting after a Trip
- Trip on Missing
 Transmitted Power as
 Well as Reflected, and
 Eliminate Multi-Pulse
 Trips.

"Window-tron" Studies Breakdown Patterns

High-Q Cell

(Low v_g)

Low-Q Cell

 $(High v_g)$

(Scale 3-4 times High-Q picture.)

"Window-tron" Studies Damage Dimension

High Gradient R&D

Structure Fabrication/Test Strategy

SLAC-KEK ISG6 (Updated 12-Dec-200)

	Length	Vg	Gas Surface	Adiabatic	Surface	Part	Joining	Test
	Cells	%	Process(a)	Coupler(b)	Finish	Cleaning		Schedule
T20VG5N	20	5	Y	N	Diamond	Chemical	H ₂ -DB/H ₂ -Braze	Feb-Mar
T105VG5N	105	5	Y	N	Diamond	Chemical	H ₂ -DB/H ₂ -Braze	Feb-Mar
T20VG5NA	20	5	?	$\begin{pmatrix} Y \end{pmatrix}$	Diamond	Chemical	H ₂ -DB/H ₂ -Braze	Apr-May
T53VG3F	53	3	?	N	Diamond	O ₃ water	VAC-DB/H ₂ -Braze	May-Jun
T53VG5F	53	5	?	N	Diamond	O ₃ water	VAC-DB/H ₂ -Braze	May-Jun
T53VG3R	53	3	?	N	Regular	Chemical	H ₂ -DB/H ₂ -Braze	Mar-Apr
T53VG5R	53	5	?	N	Regular	Chemical	H ₂ -DB/H ₂ -Braze	Mar-Apr
HxxVGyM	?	?	?	?	Diamond	O ₃ water	VAC-DB/H ₂ -Braze	???
S20PI	13	SW	?	NA	Diamond	Chemical	H ₂ -DB/H ₂ -Braze	Apr-May

(a) Gas Surface Process:

Wet $H_2 \rightarrow Dry H_2 \rightarrow Vacuum firing (650° C for 10-14 days).$

(b) Adiabatic Coupler:

Reduced surface field at input coupler and first two cells.

High Gradient R&D Status

- Next NLCTA Vacuum Access February
 - DS2S Out.
 - T20VG5N and T105VG5N In.
- T20VG5N/T105VG5N
 - New structures no previous exposure to high voltage.
 - Assess effect of length on gradient limit and processing speed.
 - Do wet H₂ firing and vacuum firing help significantly?
 - Are new processing protocols from study of DDS3/DS2S effective?
 - Expect answers by the "Ides of March".
- Outcomes Not necessarily a crisp answer, but follow up paths include:
 - Positive Results
 - Manufacture next structures in similar manner.
 - Optimize structure design and evaluate alternatives.
 - Negative Results
 - Push aggressively for "Next Big Breakthrough" in manufacturing and design.

High Gradient R&D Next Steps

- Design All in manufacture now!
 - Optimization of group velocity and length T53VG5/3 (KEK/Robertson-SLAC).
 - Optimization of input impedance match T20VG5NA (KEK-SLAC).
 - Next Big Breakthrough: Standing-wave structure S20PI (LLNL-SLAC).
- Processing
 - Optimization of RF Processing Protocol.
- Manufacture/QC
 - Enhanced "Standard" Cleaning (Cells Only).
 - Next Big Breakthrough: Ultra-Pure Water Rinsing (Cells Only).
 - Next Big Breakthrough: Glow Discharge Cleaning (Completed Structure).
 - In the queue: Ultra-Pure Water Rinsing (Completed Structure).
 - In the queue: High Pressure Water Rinsing.
 - In the queue: Megasonics Cleaning.

"Next Big Breakthrough" manufacturing options being studied with coupon and "Window-tron" samples.