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� Based mostly on Summary Talk by J.C. Brient

� I won't discuss all topics or go into much detail
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Energy Flow

with high granularity
calorimeters

P. Gay

JC. Brient P. Cloarec V. Djordjadze P. Mora de Freitas

F. Le Diberder S. Monteil D. Orlando D. Reid H. Videau
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Framework

consists in ECAL and HCAL design and Jet
reconstruction algorithm

� detectors

ECAL Si/W sampling calorimeter

Known principle

all requests ful�lled

�E=E� 10.3%/
p
E

1x1cm2 pad size

HCAL Digital calorimeter

sampling calorimeter (inox) with digital pad
read-out

energy reconstructed from pad multiplicity
(principle tested w/ ALEPH data)

1x1cm2 pad size

� EFLOW algorithm

Ejet=� Ech + � E + � Eneutralh

Identi�cation and reconstruction of all eow objects

- Charged tracks from tracker system
- Photons from ECAL V photon reconstructionF

- Neutral hadrons (KL, neutron) V neutral hadron
from ECAL & HCAL reconstructionF

F w/ rejection of debris from charged hadron interaction
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granularity

Zoom on the transverse view of the detector

Visualization performed w/ FANAL package developed by
H.Videau
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Photons
Anyway some benchmarks are needed

photon energy      (GeV)

ef
fii

ce
nc

y
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

 ALEPH/WSI-TESLA for the same rate of fake

 Distance to the closest Charged track (cm)

 p
ho

to
n 

re
co

ns
tr

uc
tio

n 
ef

fic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

PFD eÆcency to �nd photon

in the low energy region

� 99% above 0.25 GeV

Photon reconstruction
eÆciency
as a function of the
distance to charged
tracks (��)

E�. greater than 85%
since 3 cm
and 50% at 2 cm

(for a fake rate � 15%)

Largely better
than ALEPH

up to 10 cm
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Neutral hadrons

Reconstruct a neutral hadron very close to a charged
track is possible
with a reasonable eÆciency : �75% @ 1 cm
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Full simulation and reconstruction

no use of ��momentum

code not yet adapted for jets (very slow)

thus a fast simulation based on output from full reconstruction has been

used for jets
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Jets (1)

Quasi-full reconstruction

� Charged tracks
fast simulation
Etrack=99.7%
Pmin=0.2GeV/c

2

� Photons
full reconstruction
Emin=200 MeV
no calibration

� Neutral hadrons (KL, neutrons)
fast simulation
fake rate and E(E; dist) from full reconstruction
Emin=500 MeV

Test
 Z decays in jets
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Prospects

with a crude vertexing method and branch de�nition
for (1GeV)/��(10GeV)

e�. as a function of the distance
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�Mvis e.m. neutral h h�

4.2 GeV/c2 1.7 GeV/c2 3.9 GeV/c2 -

'vertex' reconstruction in ECAL/HCAL would be a
solution to improve the K/��separation
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Study of Energy Flow in Jet Reconstruction

R. Frey & M. Iwasaki, Univ. of Oregon

� Good jet reconstruction essential to explore and make use of all decay

modes

� multi-jet masses: e.g. Zh vs ZZ vs WW

� reconstruct parton angles to extract quantum numbers, anomalous
moments, e.g. WW, t�t, t! bqq0

� Use combination of tracker and calorimeter which provides best resolution:
tracker for h�, EM cal. for �0 (, HAD cal. for K0

L
, etc.)

� Requires excellent  { h� id. ) EM Cal. segmentation

� Realistic modelling requires more-than-primitive cal. clustering algorithm(s)

This Study:

� Develop EFlow technique in LCD simulation

� Implications for detector design in terms of physics benchmarks

� Compare to other techniques for jet recon.

� Start with LCD Fast Simulation

� Move to Full Sim. (Gizmo/GEANT 4), clustering alg. (c.f. N. Graf talk)



Ident. and measurement of Photons

� Here, used e+e� ! ZZ ! 4q

� Start by looking at all Cal. clusters. Use to id. photons:

� Longitudinal depth of shower max. (cluster max. or shower start)

� No charged tracks overlap with cluster

� helical extrapolation of tracks to cluster position

� 2-D separation (bend, non-bend)

� Nearest charged track does not give p = E

� Combine these photon candidates with charged tracks ! �nd jets



Separation of Cluster and nearest charged track (extrapolated)

Small Detector: BR2 = 3:4 T-m2 , Rm = 0:9 cm
( dr � bend � non-bend separations )

� Cluster is due to a ��:
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� Cluster is due to a :
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Separation of Cluster and nearest charged track (extrapolated)

Large Detector: BR2 = 12 T-m2 , Rm = 1:6 cm

� Cluster is due to a ��:
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� Cluster is due to a :
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f is fraction of photon clusters which have at least one charged track

within a radius d (transverse plane)

d (cm) f (%), Small Det f (%), Large Det

1:0 97:5 99:8

2:0 92:7 98:6
3:0 86:0 96:7
5:0 73:2 92:3

10 53:0 81:9
20 61:2



� Fast MC Simulation { Charged Tracks Only::
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� Fast MC Simulation { Cal. Clusters Only::
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� Energy Flow - Detector S; dr > 0:5 cm:

Top: Only one 2-jet combination per hemisphere.

Bottom: Form all 2-jet combinations (4-jet events).
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� Energy Flow - Detector L; dr > 1:0 cm:
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� Energy Flow - Detector S; dr > 0:5 cm:

Jet-Jet Mass (GeV)
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� Energy Flow - Detector L; dr > 1:0 cm:

Jet-Jet Mass (GeV)
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