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Physics Opportunities of
the Linear Collider

• Premier physics goals of linear
collider characterized by heavy-
quark decays and small cross
sections
– eg.

Higgs branching ratios

tt (usually 6 jets, 2 b)

tth (usually 8 jets, 4 b jets)

AH (12 jets with 4 b jets)

and other reactions
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Requirements of the
Vertex Detector

• Highly efficient and pure b and
c tagging, including tertiary
vertices (b→→c)

• Charge tagging (eg.  b/b
discrimination)

• These goals are achieved by
optimized impact parameter
performance:
– point resolution < 4  µµm
– detector thickness < 0.2% X0

– inner radius < 2 - 3 cm
– good central tracker linking

• Also must take care with
timing and radiation hardness
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SLD has demonstrated
the power of a PIXEL

detector in the LC
environment

• 307,000,000 pixels
• 3.8 µµm point resolution
• pure and efficient flavor tagging at

the Z-pole
– ~ 60% b eff with 98% purity
– > 20% c eff with ~ 60% purity

• We need a pixel solution
– decision on option can wait
– optimize options based on active R&D

program
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Options under
development

• CCDs
– system level demonstration with SLD

(307,000,000 pixels)
– R&D to advance performance

• Hybrid Active Pixels (HAPDs)
– fast, rad-hard

• Monolithic APDs
– fast, rad-hard

We need to pursue all of these
options vigorously to ensure the
best possible vertex detection at

the LC
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Session D3

• CCDs
– C. Damerell (system development)
– K. Stefanov (mech./ rad-hard devel.)

• Hybrid APDs
– M. Caccia (prototype, charge sharing)
– G. Alimonti (“3-D” detectors, bmp bnd)

• Monolithic APDs
– G. Deptuch (prototype, beam test)

• Performance studies
– T. Abe (heavy jet tagging)
– J. Brau (Higgs BRs)
– S. Xella (flavor tagging)
– B. Schumm (aggressive scenarios)
– M. Battaglia (3 Tev - CLIC)
– A. Miyamoto (flavor tagging)
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Charge Coupled Devices
(CCDs)

• Chris Damerell
– system development

• build on SLD experience with years of
operation with 307,000,000 pixels

– 5 barrel, 799,000,000 pixels with
beampipe radius of 14 mm and 3 hit
coverage to cos  θθ  = 0.96

– thinning ladders to 0.06% X0
– Readout architecture

• column-parallel readout for TESLA

• Konstantine Stefanov
– investigating near Troom use
– mechanical design studies
– rad-hard devel. to reduce CTI

• improves 60-100 times
• “will survive 10 years”
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• Currently pushing the ‘unsupported silicon’ option

• Results with thin glass CCD models are most encouraging

• Assisted by the strong technology evolving for PTPs (paper-
thin packages)
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NLC: × = × 3190 120 22.8 10 bunches/s

TESLA: × = × 32820 5 14.1 10 bunches/s

Luminosity and background per bunch are similar.

NLC: CCD readout in 8 ms between bunch trains provides
adequate background control

TESLA: 15 times more luminosity per train, so need to read
repeatedly during each train of 950 µs

→ Concept of column-parallel readout in 50 µs , which is
interesting for other CCD application areas.

[An earlier option of fast clear, fast trigger and kicker magnet to
kill the bgd was excluded by GMSB and other subtle
signatures: the LC DAQ must run in an untriggered mode.]

Readout Rate/CCD Architecture
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Readout IC
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Notch CCD

l Additional implant in the channel;

l ‘Notch’ in the potential profile;

l Small signal packets are transported

in the notch;

l        
s

t

n

n
∝CTI ,

tn  - concentration of defects,

sn  - concentration of signal electrons.

Signal density for small charge packets

increases

       Lower CTI

Charge
packet

Radiation-induced
defects

Charge transport channel

Oxide

Additional
implantGate

Potential profile

Standard CCD Notch CCD

Transfer
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Notch CCD

l Hamamatsu Photonics Notch

CCD has 3 µµm wide additional

implant in the channel.

Electron irradiation:

l Vertical (parallel) CTI is about 3

times lower than that in a

conventional CCD.

Neutron irradiation:

l Vertical CTI of CCD, irradiated

to 5.7××109 neutrons/cm2 is less

than 5××10-5.
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Injection of additional charge (fat zero effect)

Dark current electrons occupy traps

Less signal electrons are lost

The most powerful method for

reducing charge losses

l Injection of 1000 electrons introduces

32 electrons (RMS) noise

l Noise of high speed CCD: about 100

electrons (RMS)

l Requires CCD with an injection

structure

Experiment on EEV02-06 CCD: 8 to 10

times CTI reduction
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CTI improvements

After 10 years of operation ( ≈≈5××1012 electrons/cm2 90Sr, and ≈≈5××109 neutrons/cm2 252Cf)

l Vertical CTI reaches 4.8××10-2 (at maximum, 250 kpix/s)

l Horizontal CTI is much smaller than the VCTI.

l Neutron irradiation causes small CTI.

Budget for improvement:

Option VCTI improvement

Raise the readout speed to >> 5 Mpix/s ≈≈1.3 times

Use 2-phase CCD ≈≈2.5 times

Use notch CCD 3 to 4 times

Inject dark charge ≈≈1000 electrons (at >5 °°C) 6 to 8 times

Total improvement : ≈≈ 60 to 100 times

Recent simulation gives 1.5××1012 e+e- pairs/cm2/10 years, however their energy is higher than 90Sr

electrons (safety margin of 10 gives 15××1012 electrons/cm2  90Sr).
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Model CCD

Based on the present knowledge on radiation damage effects and device architecture

Reduced worst-case CTI:

Vertical CTI to ≈≈ 8××10-4, output charge after 250 transfers: (1 −− 8××10-4)250 == 0.82 (18% loss)

Horizontal CTI to ≈≈ 8××10-5, output charge after 1000 transfers: (1 −− 8××10-5)1000 == 0.92 (8% loss)

Total charge at the output: 0.82××0.92 == 0.75 (25% loss)

The CCD will survive for 10 years ( ≈≈5××1012 electrons/cm2  90Sr, ≈≈5××109 neutrons/cm2   252Cf), or for 3

years (at 15××1012 electrons/cm2)

250 vertical
pixels

10 ÷ 12 mm

2000 horizontal
pixels

80 ÷ 96 mm

2 Mpixel device
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Hybrid APDs
(Active Pixel Devices)

• Massimo Caccia
– readout pitch > pixel pitch
– prototype tested
– charge sharing efficiency

demonstrated
– next step ⇒ beam test of improved

device

• Gianluca Alimonti
– first “3-D” detectors fabricated

• leakage currents 1/4-1 nA/mm3 (Troom)
• low depletion voltage
• active edges

– Rad-hard XTEST2
– bump bond yields good
– next year ⇒ prototype system



p+

n

PoliresistorInterleaved pixelReadout pixel

Hybrid  detectorHybrid  detector
with interleaved pixels betweenwith interleaved pixels between

the output nodesthe output nodes

readout pitch =  n x pixel pitch

Large enough to
house the VLSI
front-end cell

Small enough for
an effective
sampling



Due to the capacitive charge division  a
particle will induces a signal on the
surrounding pixels  beyond the diffusive
charge carrier spread

p+

n

Particle



Laser spot
Read out pixels

Interleaved pixels

ηη

NO diffusion, capacitive coupling
only

Diffusion and capacitive
coupling with a 25 µµm pitch

Charge sharing IICharge sharing II

Resolution < 25 µµm/√√12
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Monolithic APDs
(CMOS)

• G. Deptuch
– prototype tested with beam

• 64 x 64 pixel arrays
– next year ⇒ increase size

• ~ 10 cm
– outstanding potential

• rad-hard
• high precision
• ultra thin
• low cost

– issues to address
• expand to system
• power
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Performance studies

• Bruce Schumm
– aggressive scenarios (just to see)

• improved resolution (⇒ 1 µµm)
• smaller beampipe (⇒ 0.5 cm)
• greater radial extent (⇒ 11 cm)
• thinner layers (and pipe) (⇒  0.06% X0)

– conclusions:
• good central tracking vital
• spatial resolution and beampipe radius

lead to substantial improvements

• Akiya Miyamoto
– flavor tagging
– conclusion:

• significant improvement with inner
radius of 1.2 cm vs. 2.4 cm
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Performance studies
(continued)

• Toshi Abe
– heavy jet tagging
– ZVTOP installed into LCD simulation

• Stefania Xella
– flavor tagging with neural net

including ZVTOP
– update for new TESLA geometry
– future ⇒ ZVTOP3, vertex charge,

dipole charge

• Jim Brau
– detector parameters and Higgs BRs
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Performance studies
(continued)

• Marco Battaglia
– 3 Tev - CLIC
– extreme energies lead to some very

long decay lengths (several cm)
– proposes counting tracks with pulse

height information
– demonstrates viability with

simulation of σ (σ (e+ e− → b b)
determination
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Summary of LCWS2000

• Progress continues to advance on
many fronts
– CCDs

• R&D to advance the already
demonstrated exceptional
system-level performance

– Hybrid APDs
• prototypes with charge sharing

understood
• “3-D” detectors fabricated

– Monolithic APDs
• effort to capitalize on industry

standards
• first chip shows extraordinary

promise
– Performance simulations

• tradeoffs becoming clearer
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Future Directions

• Continue progress on all fronts

• CCDs
• Hybrid APDs
• Monolithic APDs

• Performance simulations

• Refine our understanding of the
impact of detector trade-offs on
physics performance

• We will be able to exploit the
exceptional physics
opportunities of the LC


