

NLC IR Layout and Background Estimates as of LCWS 2000

Tom Markiewicz/SLAC SLAC LCD Meeting October 17, 2000

The Experts

Takashi Maruyama (SLAC) Jeff Gronberg (LLNL) Pairs and Neutron Backgrounds

Stan Hertzbach (U. Mass)

Synchrotron Radiation

Lew Keller (SLAC)

Muons Collimator Efficiency

Introduction

- Last time (9/5/00) you saw background **ESTIMATES** that were based on:
 - ZDR final focus
 - $L^* = 2$
 - Small Detector
 - 1 TeV c.o.m.
- Extrapolated to:
 - Raimondi Final Focus
 - $L^* = 4.3 m$
 - Large Detector
 - 500 GeV c.o.m.
- This talk has
 - **NEW** calculations for pairs & radiative bhabhas
 - charged hits, photons, & neutrons
 - NEW muon background calculations
 - OLD dump neutron estimate since extraction line is UNCHANGED

LCD-L2 in GEANT 3

Pair hits at z = 3 m

Pair hits at z = 4 m

LCD-L2 Hit Densities vs. Radius

e[±] and photon background in tracing detector

March 2000 Hit Density Results LCD-L(4T) & S(6T) at 1 TeV

Hit Density in VXD and Central Tracker

Radius (cm)

Neutron Production from Pairs with 10cm Be absorber

Neutron Production from Pairs with 50cm Be absorber

VXD Neutron Dose Rate

OLD PAIR & RB Estimate	Beam-beam pairs Small Detector Large Detector (4Tesla) Radiative Bhabhas	Neutron density 1.9 x 10 ⁹ hits/cm ² /year 4.4 x 10 ⁹ 0.01			
OLD but still VALID DUMP & Dumpline Estimate	Disrupted Beam Lost in ext. line Back-shine from dump Beamstrahlung	0.01 0.2			
NEW PAIR & RB Estimate	Back-shine from dump New Calculations for Large Detector Beam-beam pairs 1 TeV 1 TeV ("Low-Z" = 50 cm) 500 GeV	0.05 (3 Tesla) and L* =4.3 m 7.4 x 10 ⁸ hits/cm ² /year 2.0 3.2			
	Radiative Bhabhas 1 TeV 500 GeV	7.3 x10 ⁶ hits/cm2/year 3.1			

Neutron Hit Density vs. Extraction Line Aperture

Radius (cm)

NEW Hi/Lo NLC Layout WITHOUT Big Bend

Muon Spoiler Locations

NLC - The Next Linear Collider Project

250 GeV/beam Muon Endcap Background

500 GeV/beam Muon Endcap Background

250 GeV/beam Endcap CAL Background

- Halo
 - QD0 and QF1
 - Limiting Apertures
 - Beam Pipe Radius
 - Extraction Line Shielding
- Core
 - Soft Bend 30-150m UNDER Review
- Less than Optimal Beam at Turn On
 - How conservative do you want to be?
 - Emittance
 - Energy Tails

Halo SR at the Beam Pipe

Assumes 1E-3 halo

Eγ ~ 3-4 MeV

Sextupoles not yet included

Effective vs. Ideal accounts for 1% beam energy spread and planar collimation

$C = 11^{4} \cdots = 4^{4} \cdots = D = -41$									
Collimation Depth									
Max. allowed x'	280 µrad			240 µrad			200 µrad		
Max allowed y'	1000 µrad			1000 µrad			1000 µrad		
Ideal x coll. Depth	10 sigma			8.57 sigma			7.14 sigma		
Ideal y coll. Depth	25 sigma			25 sigma			25 sigma		
Effective x coll.depth	5.6 sigma			4.6 sigma			3.6 sigma		
Effective y coll. Depth	16.6 sigma		16.6	sigma		16.6 sigma			
	Hits @ BF	BP Hits @	Hits/	Hits @ BF	BP Hits @	Hits/	Hits @ BF	BP Hits	Hits/
	Flare	Min. R	mm^2	Flare	Min. R	mm^2	Flare	@ Min. R	mm^2
Beam Pipe Radius (mm)									
9.50	3.4E+04	3.5E+04	10	0	0		0	0	
9.25	4.0E+05	4.1E+05	110	0	0	(0	0	0
9.00	1.7E+06	1.7E+06	470	0	0	(0	0	0
8.75				0	0	(0	0	0
8.50				6.0E+04	1.0E+05	31	2.7E+03	7.9E+03	2
8.25				1.4E+06	1.3E+06	390	5.0E+05	5.5E+05	170
8.00				8.8E+06	4.1E+06	1300	5.6E+06	2.4E+06	760

HALO Synchrotron Radiation Fans with Nominal 240 μrad x 1000 μrad Collimation

Halo SR Fan Edges Near VXD

NLC - The Next Linear Collider Project

1.0 TeV 1 σ Bend SR and 12 σ *19.83 μ rad Orbit 0.5 TeV 1 σ Bend SR and 8.57 σ *28 μ rad Orbit

Masks outside of 12σ beam stay-clear at 45m & 100m from IP absorb soft bend SR

HORIZONTAL PLANE [cm]

Soft bend ends 18m from IP: working to fix this without adding too much length to FF

Ultimate Limit on Beam Pipe Radius Energy Tails

- If the vertex detector radius is very small, synchrotron radiation from the core *Gaussian* beam sets the limit.
- Vertex detector hit density ~hit density on beam pipe.

SR Hit Density (hits/mm²) on Inner Wall of Beam Pipe

for 3 collimation depths and as *beam energy* varies

Max. X'	280 & 240 μrad				200 µrad				
δ E(%)	0	0.1	0.5	1.0	0	0.1	0.5	1.0	
R(mm)									
10.0									
9.0									
8.0									
7.0				0.4					
6.0	0.001	0.005	0.8	190	0.001	0.005	0.7	170	
5.0	1.4	4.7	330	26 K	1.4	4.7	330	26 K	

Ultimate Limit on Beam Pipe Radius Larger Emittance

- Allow for larger than nominal emittance *Gaussian* beam.
 - Startup issues.
 - Factor of 2 in beam size is factor of 4 in emittance.
 - Running below nominal energy (500 GeV Ecm) will mean reduced luminosity and/or larger emitttance.

SR Hit Density (hits/mm²) on Inner Wall of Beam Pipe

Max. X'	240 microrad								
ε/εο	1.0	1.2	1.5	2.0	2.5	3.0	4.0	9.0	
R(mm)									
10.0									
9.0									
8.0								0.05	
7.0			0.006	1.1	23	180	2400	160 K	
6.0	0.001	0.05	1.9	87	890	4300	31 K	860 K	
5.0	1.4	19	270	3900	20 K	61 K	X	X	

Conclusions

- Better background performance than ever!
- Don't get too greedy too soon!!