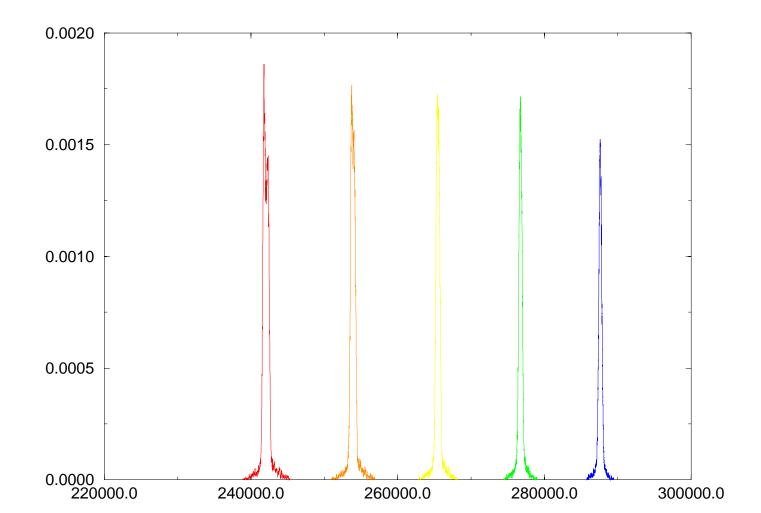


Low / High Energy IR Option

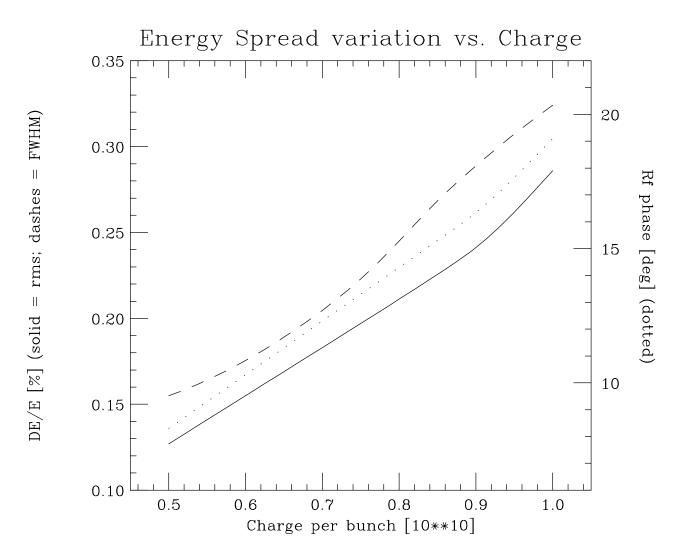
Tor Raubenheimer 6/22/00

Qualifier: Real work has yet to be done!

Low/High Energy IP Option


Luminosity Estimates

	Preliminary! IP Parameters for low energy IR					
	90 GeV		250 GeV		350 GeV	
	1.4 ns	$Low \delta B$	1.4 ns	$Low \delta B$	1.4 ns	$Low\deltaB$
Luminosity (10 ³³)	4.1	2	10.4	5.1	14.1	7
Pinch Enhancement	1.4	1.3	1.4	1.3	1.4	1.3
Repetition Rate (Hz)	180	180	180	180	180	180
Bunch Charge (10 ¹⁰)	0.75	0.75	0.75	0.75	0.75	0.75
Bunches/RF Pulse	190	190	190	190	190	190
Bunch Separation (ns)	1.4	1.4	1.4	1.4	1.4	1.4
Injected $\gamma \epsilon_x$ / $\gamma \epsilon_y$ (10 ⁻⁸)	300 / 3	300 / 3	300 / 3	300 / 3	300 / 3	300 / 3
$\gamma \epsilon_x$ at IP (10 ⁻⁸ m-rad)	400	400	400	400	400	400
$\gamma \epsilon_y$ at IP (10 ⁻⁸ m-rad)	4.6	4.6	5.2	5.2	5.5	5.2
Tolerances	10	10	10	10	10	10
β_x / β_y at IP (mm)	10/0.12	35 / 0.12	10/0.12	35 / 0.12	10/0.12	35 / 0.12
σ_x / σ_y at IP (nm)	670 / 7.8	1250 / 7.8	404 / 5.1	760 / 5.1	340 / 4.4	640 / 4.4
σ _z at IP (um)	125	125	125	125	125	125
L0 / Ltotal (%)	62	78	49	67	44	63
Yave	0.007	0.004	0.033	0.017	0.081	0.043
Beamstrahlung δB (%)	0.16	0.05	1	0.31	1.8	0.57
Photons per e+/e-	0.47	0.25	0.75	0.41	0.88	0.48
Polarization loss (%) ??	0.07	0.02	0.2	0.06	0.31	0.09


Beam Energy Spread Issues

Energy Spectra for 125um and N=0.5 1.0

Beam Energy Spread Issues

Scaling δ_B and δ_E with Luminosity

- Can reduce beamstrahlung and beam energy spread at the expense of the luminosity
 - Assuming flat beams:

$$L \propto \frac{N^2}{\sigma_x \sigma_y} \qquad \delta_B \propto \frac{N^2}{\sigma_z \sigma_x^2} \qquad \delta_E \propto \frac{N}{\sqrt{\sigma_z}}$$
$$y_{align} \propto \frac{1}{N\sigma_z}$$

- Decrease beamstrahlung by increasing horizontal beam size
- Decrease energy spread and beamstrahlung by increasing bunch length (tightens alignment tolerances)
- Decrease energy spread and beamstrahlung by decreasing bunch charge

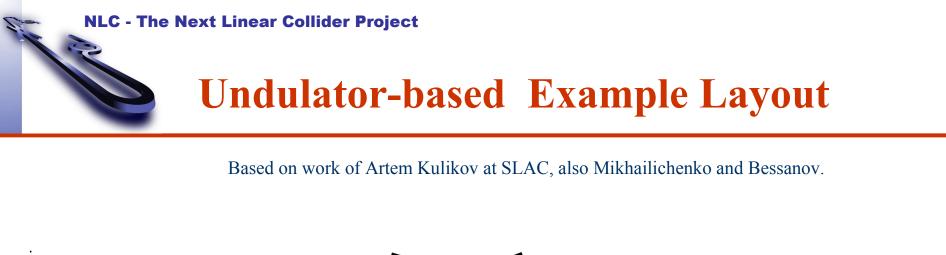
Low / High Energy IR Issues

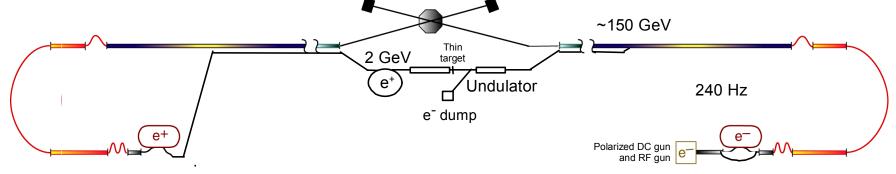
- 180 Hz beam rate
 - Positron target
 - Damping rings
 - Klystrons / modulators average power limitations probably OK
 - Injector beam dumps
 - Site power and cooling
- Main linac extraction sections
- Beam Delivery
 - Smaller energy range allows for better FF magnet optimization
 - Muon backgrounds increase for high-energy IR
 - Push/pull detector arrangement for high-energy IR?
 - Required IR separation?
 - Required luminosity performance?
- Staging construction

Positron Generation

- NLC 'conventional' e+ source is difficult
 - 6 GeV e- beam incident on a 'thick' 4 r.l. target
- Two other options: undulator or laser based systems
 - 100+ GeV beam through an undulator to generate 20+ MeV photons which are directed on a 'thin' 0.5 r.l. target
 - Backscatter 1-10um laser on few GeV beam to generate photons very high power laser system
- Both can generate polarized positrons by using polarized undulator or polarized laser beam although yields are lower and system is more difficult
- TESLA must rely on undulator-based technique because of power into target
- Undulator scheme is more difficult when running at the Z

Specific Issues


Compton-based Source


- Possible layout and cost
- e⁻ beam few Gev
- Laser difficult high power, high rate
- Polarization easy
- Provides for random helicity flips

- Low intensity expt done at KEK
- Being pursued at LLNL

Undulator-based Source

- Possible layout and cost
- e⁻ beam 150Gev?, intensity?
- Undulator wavelength?
 Can undulator be in main e⁻ beam?
- Polarization challenging
- Changing helicity is difficult
- TESLA design uses undulator
- Being pursued at SLAC

Scenario 1

e⁻ Source runs at 240 Hz, 120 into + 120 bypassing DR, Polarized RF Gun? First 150 GeV of e⁻ Main Linac also runs at 240 Hz (\$\$\$).

Scenario 2

Primary e- beam passes through undulator. Emittance preservation needs study.

180 Hz Damping Rings

• High rate beam for simultaneous operation of both IRs

$$\boldsymbol{\varepsilon}_{ext} = \boldsymbol{\varepsilon}_{inj} e^{-2t/\tau} + \boldsymbol{\varepsilon}_0 (1 - e^{-2t/\tau})$$

- Higher beam rate ⇒ faster damping or smaller injected emittances
- Improve e- damping ring -- probably need 2 rings but less wiggler which makes each ring simpler
- Similar problem on e+ side -- improved e+ emittance using undulator or laser based system will help although will likely need to replace MDR with 2 rings anyway
- Other components are not a limitation except for ac power

Main Linac Beam Extraction

- Have extractions at 55 GeV, 100 GeV, and 180 GeV??
 - This should cover close to full range
 - What is needed?
- Pulsed kicker might be considered although dangerous for MPS and beam stability
 - 2-9 kicker has an integrated field of 3 kG-m and would cause a 1 mrad deflection of a 100 GeV beam
 - Stability must be << 1/1000
- Alternately use beam energy in a dispersive region but this requires a larger insertion in the linacs (100 meter)
- Need to add bypass line along length of linac

Beam Delivery Issues

- Final focus aperture is set by low energy beams but magnet strength is limited by highest energy operation
 - Final focus has limited energy range without rebuilding magnets and vacuum system - also have to move magnets to optimize beam size due to dispersion versus emittance
- Simplify design by dedicating one IR to 'low' energy operation and one to high energy operation
 - 'Low' energy range of 90–350? GeV
 - 'High' energy range of 250–1000 GeV
- High energy beamline would have minimal bending to allow for upgrades to very high collision energies
 - 'High' energy BDS could be upgraded to multi-TeV operation
- Separate collimation for low and high energy beams

Interaction Region Issues

- Need transverse and longitudinal separation to isolate one IP from vibration inducing activity at the other
 – how much?
- Need a crossing angle to minimize parasitic collisions from closely spaced bunches
- Need crossing angle of 20 mrad or more to provide space for injection and extraction line magnets
 - Difficulties with low energy beam in solenoid
- Big bend provides order of magnitude reduction in muons generated in collimation section
 - however Big Bend limits the maximum energy of the BDS since emittance dilution in arc scales as E⁶ and sets limit on IR separation

- Is the low/high-energy IR option interesting?
- Is the high-energy IR with a push-pull detector arrangement acceptable by itself?
- Not free!
 - Upgraded DRs, klystrons, modulators, ac distribution, bypass line
 - 2nd collimation system, EOL diagnostics, big bend, FF, and IR
- Luminosity and beam requirements are needed!
 - how much, what beamstrahlung, what polarization loss?
 - Energy and polarization: stability, measurement accuracy, and measurement precision?
- Lots of work on e+ sources and damping rings